Utilization of 5-ALA in Functional Pituitary Tumors: Pre-Clinical Work in Pituitary Cell Lines

Keiko Kang, BS1,2, Anudeep Yekula, MBBS1, Leonora Balaj, PhD1, Bob Carter, MD, PhD1, Pamela Jones, MD, MS, MPH1

1Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School and Harvard Medical School, Boston, MA.

2School of Medicine, University of California, San Diego, La Jolla, CA.
Disclosures

• The authors have no other financial or organizational relationships with commercial interests or other entities
Introduction

• 5-aminolevulinic acid (5-ALA) is used for fluorescent guided surgery (FGS) in glioblastoma; however, its role in the resection of other cranial tumors is unclear

• Pituitary adenomas (PA) can be difficult to differentiate from normal gland, leading to suboptimal surgical and neuroendocrine outcomes

• Here, we investigate uptake of 5-ALA in functional pituitary cell lines
Methods

- **Cell Lines:**
 - PDFS (non-functional, negative control)
 - Gli36 (glioma, positive control)
 - GH3 (growth hormone/prolactin)
 - AtT20 (ACTH)

- **5-ALA Dosing:** Cells were incubated in the following conditions:
 - 0 mM (mock), 0.2 mM, 0.4 mM, 0.8 mM, 8.0 mM, 16.0 mM for 24 hours

- **Image Flow Cytometry:** Excitation at 405nm, collection at 660-670nm; gated to isolate single cell, fluorescent events
Results

- The graph depicts fluorescence in positive (Gli36) and negative (PDFS) control cell lines dosed with 5-ALA relative to mock.
- Non-functional pituitary cell lines (PDFS) did not fluoresce after 5-ALA administration.
- We re-demonstrate fluorescence of glioma cells after administration of 5-ALA.

![Graph showing fold change of fluorescent intensity against 5-ALA dose](image)
Results

- Functional pituitary cell lines demonstrate fluorescence after 5-ALA administration.
Results

- The functional pituitary cell lines demonstrated greatest fluorescent intensity after dosing with 0.4mM 5-ALA
- GH3 (p = 0.008) and AtT20 (p = 0.031) cells had significantly higher fluorescent intensity than the PDFS cells
Discussion

• We demonstrate uptake of 5-ALA in functional pituitary adenoma cell lines, which was significantly higher as compared to non-functional pituitary adenoma cell lines

• Our data demonstrates the potential of 5-ALA for FGS of functional PAs

• This work may pave the way for use of 5ALA in patients with MRI-negative, functional PAs
Summary

1. We demonstrate uptake of 5-ALA and fluorescence in the functional GH3 and AtT20 pituitary cell lines

2. Maximal fluorescent intensity in the GH3 and AtT20 cell lines was observed with a 5-ALA dose of 0.4mM

3. A significantly higher fluorescent intensity was observed in GH3 and AtT20 cells compared to PDFS cells at the optimal 5-ALA dose