Positional Posterior Plagiocephaly: Determining a Clinical CVAI Correlation

Poster ID:1472

Ranbir Ahluwalia B.S., Jarret Foster B.S., Chelsea Kiely, Madeleine M. Sherburn B.A., Chevis N. Shannon, DrPH, MBA., Christopher M. Bonfield M.D.
Disclosures

- No financial or other disclosures
- The other authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper. The authors have no personal or institutional financial interest in drugs, materials, or devices described in their submissions.
Introduction

- Plagiocephaly is a non-synostotic unilateral flattening of the occiput associated with facial asymmetry\(^2\).
- Infant positioning during sleep and play have been shown to create external force on the skull\(^3\).
- Notably, Ahluwalia et al\(^4\) have demonstrated that prevalence of plagiocephaly decreases with age, and most cases are mild in nature.
- Objective: Previously, CVAI (Cranial Vault Asymmetry Index) has been adapted to assess prevalence of plagiocephaly radiographically; however, no CVAI cutoff has been implicated as a clinically significant marker to prompt a diagnosis.

Figure 1. Pediatric skull with plagiocephaly. Littlefield et al\(^1\).
Methods

• A retrospective review was performed on 642 patients in 2018 aged 0 months to 24 months who initially presented with head trauma, and ultimately had a negative non-contrast CT scan.

• A cranial vault asymmetry index (CVAI) was performed for each scan at the level of the superior orbital rim.

• Plagiocephaly status was blinded to the reviewer of the scan.

• The diagnosis of plagiocephaly (CPT Q97.3) was paired to all patient’s and their respective CVAI indices.

• Chi-squared analysis was performed with statistical significance being set a priori p<0.05.
Results

Table 1. Demographic information

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (months)</td>
<td>7.53661</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>382 (59%)</td>
</tr>
<tr>
<td>Female</td>
<td>260 (41%)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>411 (64%)</td>
</tr>
<tr>
<td>African American</td>
<td>97 (15%)</td>
</tr>
<tr>
<td>Other</td>
<td>134 (21%)</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>167 (26%)</td>
</tr>
<tr>
<td>Non-Hispanic</td>
<td>475 (74%)</td>
</tr>
<tr>
<td>Plagiocephaly cases</td>
<td>100</td>
</tr>
</tbody>
</table>
Figure 3: Proposed CVAI Radiographic Cutoff
• CVAI is inherently imaged-based calculation, and it’s utility is optimized with the use of non-invasive imaging.
• In our study, patients were grouped by CVAI from 2.5% to 12.5% at 1% intervals. All CVAI intervals had statistically significant association in diagnosing plagiocephaly p<0.05.
• However, the strongest association exists at a CVAI of 5.5% $X_2(1, N=642) = 76.2$, $p <0.05$.
• Of patients diagnosed with plagiocephaly, 90% had a CVAI of 5.5% or greater. Thus, this represents the optimal CVAI to filter and diagnose plagiocephaly clinically.
• As such, it is important to note that this radiographic marker must be correlated with a clinical diagnose. There is a variety of cranial and skull asymmetry defects which can be confounding factors in the pediatric population.
• Future direction: Non-contract CT scans will need to be replaced by low-radiation scans to implement the use of CVAI.
Conclusion

• Bottom line: CVAI is a clinically useful tool for measuring the radiographic presence of plagiocephaly; CVAI over 5.5% should prompt a clinical diagnosis.

• This single-center pilot study will need to be validated through a Multi-Institutional effort.

• CVAI needs to be adapted for low-radiation scans. This would maximize clinical utility.
References

Conclusion/Future Directions

• PPP is a prevalent condition in the pediatric population
• Overall decline is expected
• Future directions:
 – Clinical correlation of CVAI
 – Brachycephaly
 – Understanding disparities in treatment and diagnosis