Propranolol Anti-tumor Effect In GBM is Mediated By Broad Changes In Gene Expression Networks

Rogelio Medina, Matthew J. Shepard, Alejandro Bugarini, Qi Zhang, Aiguo Li, Zhengping Zhuang and Prashant Chittiboina

Neurosurgery Unit for Pituitary and Inheritable Disorders, NINDS
Disclosure Statement

- The lead author has no conflict of interest that need to be disclosed
Repurposing Propranolol as an Anti-Tumor Agent for Glioblastoma

- Glioblastoma multiforme (GBM) is the most lethal primary brain tumor and there is an urgent need for more effective treatments.
- Propranolol, a pan-beta receptor antagonist, has demonstrated potent anti-tumor properties against VHL-associated hemangioblastomas and other solid tumors, including breast cancer and melanoma.
- Preliminary *in-vitro* studies have demonstrated that propranolol exerts an anti-tumor effect on multiple GBM cell lines.
- The exact mechanisms of Propranolol’s anti-tumor action remain unknown and was the focus of this investigation.
Study Objective Methods & Study Overview

- **Study Objective:** To identify the mechanistic underpinnings of propranolol’s anti-tumor effect on GBM cells

- **Methods:**
 - Six GBM cell lines (U251, GL261, 9L, S635, LN229 and A172) were treated with varying concentrations of propranolol (0-400µM) *in vitro*
 - Therapeutic response in propranolol-treated GBM cells was assessed with the following *in-vitro* assays:
 - Cell viability and migration assays
 - Immunoblots
 - Quantitative RT-PCR
 - Flow Cytometry
 - RNA-sequencing analyses
Propranolol Decreases the Viability of GBM Cell Lines

- Propranolol-treated GBM cells demonstrated reduced viability with an IC$_{50}$ of 100µM-200µM 24-hours post-exposure (A)
- Propranolol-treated U251 and S635 cells exhibited a 3-fold increase in the rate of apoptosis as determined by flow cytometry. Representative data shown (n=3, p<0.0001) (B)
Propranolol Decreases GBM Cell Migration and VEGF-A Expression

- Despite QT-PCR demonstrating increased expression of VEGF-A in propranolol treated GBM cells (A), a notable decrease in VEGF protein expression in propranolol treated GBM cells was appreciated in immunoblots (B) and immunofluorescence (C), suggesting translational downregulation of VEGF by propranolol.

- GBM cells (S635 and U251) exposed to 50µM and 100µM of propranolol for 48 hours exhibited a 6-fold reduction in migratory capacity via transwell assay (Figure A, p<0.001) (D).
Propranolol Alters Functional Gene Clusters Involving Cell Cycle and Cholesterol Synthesis

- RNA-seq analysis in U251 glioma cells treated with 100µM of propranolol for 24-hours revealed a statistically significant decrease in genes that control chromosomal replication and a substantially increase in the expression of genes involved in cholesterol biosynthesis.
Propranolol Modulated the Expression Genes Associated with Cellular Proliferation

- Analysis of individual genes that were differentially expressed at significant levels revealed that propranolol modulated the expression of several genes that have been previously implicated previously in cellular proliferation and/or GBM progression

- Propranolol downregulated the expression of the following genes:
 - KRT6B (86 fold, p<0.0001)
 - ALOX5 (8.5 fold, p<0.0001)
 - CXCR4 (7.5 fold, p<0.0001)

- Propranolol upregulated the expression of the following genes:
 - KRT6B (86 fold, p<0.0001)
 - DDIT4L (34.4 fold, p<0.0001)
 - CCN3 (25.4 fold, p<0.0001)
Conclusion

- Propranolol, a well-tolerated, FDA-approved beta antagonist decreases glioma proliferation, decreases its migratory potential, downregulates VEGF protein expression and leads to numerous gene expression changes that decrease GBMs proliferative potential.

- Given a long track record of safety and tolerability, clinical efforts may be pursued to probe propranolol’s anti-tumor potential in patients with GBM.
Acknowledgements and References

Acknowledgements

• The NIH Surgical Neurology Branch & National Institute of Neurological Disorders and Stroke (NINDS)
• The members of Prashant Chittiboina MD and Zhengping Zhuang MD, PhD Laboratories
• The Medical Research Scholars Program Staff and Program Members
• UCLA David Geffen School of Medicine Research Mentors Dr. Luke Macyszyn MD and Linda Baum MD, PhD

References