CORRELATION BETWEEN SIIC AND POSTOP MUSCLE STRENGTH AFTER ROLANDIC BRAIN TUMOR SURGERY

Iuri Santana Neville MD, PhD; Alexandra Gomes dos Santos; Cesar Cimonari Almeida MD; Cintya Y. Hayashi; Ricardo Galhardoni PhD; Daniel Ciampi de Andrade MD, PhD; Andre Russowsky Brunoni MD, PhD; Wellingson Silva Paiva MD, PhD

Cancer Institute of São Paulo
LIM-62 - University of São Paulo School of Medicine, São Paulo, Brazil.
Disclosure

I have read the AANS/NREF/NPA Corporate Guidelines and understand that my decisions as an AANS/NREF/NPA Board, Committee Member, speaker, content planner or Staff must conform to this policy.
I have read the AANS/NREF/NPA Conflict of Interest Policy and understand that my decisions as an AANS/NREF/NPA Board, Committee Member, speaker, content planner or Staff must conform to this policy.
I have read the AANS Non-Discrimination, Anti-Retaliation, and Harassment Policy and understand that as an AANS/NREF/NPA Board, Committee Member, speaker, content planner or Staff, I need to be aware of this policy and will report any perceived violations to the AANS Executive Director or to AANS/NREF/NPA legal counsel.
I have read the AANS Policy Regarding Harassment and Disruptive Behavior at Meetings and Courses and understand that as an AANS/NREF/NPA Board, Committee Member, speaker, content planner or Staff, I need to be aware of this policy and will report any perceived violations to the AANS Executive Director or to AANS/NREF/NPA legal counsel.
CME Conflict for Education* I have read and I understand and agree with the statements above.
Commercial Interests Statement* I DO NOT have any financial or organizational relationships with commercial interests or other entities. I hereby certify that to the best of my knowledge, no aspect of my current personal or professional circumstances places me in the position of having a conflict of interest with my duties, responsibilities and exercise of independent judgement as an Officer, Member of the Board of Directors, Nominee for Office, Educational Presenter and/or a representative of AANS/NREF/NPA.
Personal Information Consent* I have read and understood the information above. I consent to the AANS retaining personal information about me and using such information to send emails and other communications to me. I further consent to the AANS sharing my personal information with its third-party vendors, when necessary.
Recording Release* I Consent.
Final Statement* I acknowledge my continuing obligation to disclose to AANS/NREF/NPA, promptly and in writing, any change in my circumstances. I further acknowledge that if there is any case where my private interest conflict with the interests of AANS/NREF/NPA, I will indicate that I may have a conflict and abstain from any vote, speaking engagement, planning related to that issue.
Background

Preoperative mapping: critical for resection of brain tumors located on eloquent areas

Transcranial Magnetic Stimulation (TMS):
- well tolerated and safe;
- noninvasive;
- accurate;

8 studies showing that nTMS motor mapping:
- reduced the risk of postop new permanent motor deficit);
- increased the GTR rate;¹

Objective

To evaluate Cortical Excitability (CE) of patients with rolandic brain tumors and to correlate its parameters with motor outcome after surgery.

Methods

ONGOING PROSPECTIVE STUDY - 26 patients with a single rolandic brain tumor, Motor score and KPS: upper + lower extremity: preop, 5, 30 and 90-day postops.

TMS: simple and paired pulses on M1 one week before surgery.

Cortical Excitability parameters:
- Resting Motor Threshold (RMT),
- Motor Evoked Potential (MEP),
- Short-Interval Intracortical Inhibition (SIICI),
- Intracortical Facilitation (ICF).

Low x normal x high (normative values obtained by Cueva et al.)

Statistical analysis: to compare patients according to TMS classification (normal x low x high): Kruskal Wallis; correlations with motor score: Spearman. (SPSS 24.0 - IBM Statistics, Armonk, NY, USA).

Results

Study Population

- 26 patients: 53.8% of males.
- 51.08 ± 13.26 years.
Ill hemisphere > healthy hemisphere, although not significant:

RMT \(p = 0.137; \)
MEP \(p = 0.543; \)
SIIC \(p = 0.122; \)
ICF \(p = 0.088. \)
Results

Healthy hemisphere’s SIIC was correlated with motor score:
- 5-day postop (p = 0.023, r = -0.471),
- 30-day postop (p = 0.042, r = -0.447),
- 90-day postop (p = 0.047, r = -0.474),
- delta between 90-day postop and preop (p = 0.034, r = -0.517)
Patients with MS <8 presented higher healthy hemisphere SIICI than patients with MS 8-10:

- preop $p = 0.022$;
- 5-day postop $p = 0.003$;
- 90-day postop $p = 0.015$.
Discussion

Rosenstock (2017)\(^1\) found:
✓ 7-days postop: RMT ratio > 110 associated with higher probability of worsening
✓ 3-months postop: RMT ratio not significantly associated.

This study is the first to find association of a pathological neurophysiological factor with late motor outcome.

Summary points

In patients with brain tumors:

- RMT, MEP, SIIC, and ICF: Ill hemisphere > healthy hemisphere.
- Preop healthy hemisphere’s SIIC was correlated with early and late motor outcome.
- Patients with lower motor scores presented higher healthy hemisphere’s SIIC.

Funding

This work is supported by:
Fundação de Amparo à Pesquisa do Estado de São Paulo (São Paulo Research Foundation - FAPESP) [scholarship to AGS # 2019/14687-4).