A deep brain-computer interface enables patients with Parkinson’s disease to self-regulate pathological oscillations through neurofeedback

Oliver Bichsel – MMed, MSc ETH; oliver.bichsel@usz.ch

Lennart Stieglitz, MD; Markus Oertel, MD; Christian Baumann, Prof, MD; Lukas Imbach, MD, MSc ETH; Roger Gassert, Prof, PhD

Rehabilitation Engineering Laboratory, ETH Zurich
Department of Neurology and Neurosurgery, University Hospital Zurich
Disclosures

None
Introduction

- Parkinsonian motor symptoms have been linked to increased deep brain β-oscillatory activity (13–35 Hz).
- β-activity can be reduced through dopaminergic treatment and deep-brain stimulation (DBS).

- Neurofeedback has been proven to enable the self-regulation of brain activity:
 - EEG-neurofeedback for cortical oscillatory activity
 - real-time fMRI for the deep brain BOLD-signal

- Is the self-regulation of deep brain oscillatory activity through neurofeedback possible?
- Can patients with PD use DBS-electrode guided neurofeedback to self-regulate pathological β-oscillations?
Methods

- The leads of subthalamic DBS electrodes were connected to an amplifier prior to internalisation.
- β-activity was extracted in real-time and visualised on a computer screen to provide neurofeedback.
- Patients were tasked to reduce β-oscillations.
Results

- All patients in this study ($n = 8$) were able to reduce ongoing β-activity within as little as 6 minutes of neurofeedback training ($p < 0.001$) as compared to their resting β-activity.

- Control over deep brain β-activity gradually improved with training time.

- Control over deep brain β-activity was even possible after removing visual neurofeedback (i.e., deploying the previously learnt mental strategies only) ($p < 0.05$).
Discussion

- Proof-of-principle that ongoing deep-brain electrical activity can be self-regulated through neurofeedback
- PD patients can significantly reduce pathological deep-brain β-activity.

- Outlook: Can the β-reduction through DBS-electrode guided neurofeedback
 - improve Parkinsonian motor symptoms?
 - reduce the need for dopaminergic medication or stimulation?
Summary Points

- Neurofeedback is an endogenous method to control ongoing deep brain oscillatory activity.

- Our deep brain-computer interface enabled patients with PD to reduce pathological deep brain β-oscillations through DBS-electrode guided neurofeedback.