Two Versus One Surgeon for Complex Spine Deformity: A Systematic Review and Meta-analysis.

Asad M. Lak MD, Abdullah Abunimer MD, Caroline Goedmakers BSc, Linda S. Aglio MD, Timothy R. Smith MD, PhD, Melvin Makhni MD, Rania A. Mekary PhD, MSc, MSc, Hasan A. Zaidi MD
Disclosure

• None
Introduction

• Surgical management of spine deformity is challenging and associated with a high risk of complications.

• Several modifiable factors e.g. length of anesthesia, estimated blood loss and length of hospital stay contribute to this high risk of complications.

• Two attending surgeon approach has been inconsistently reported in the literature to have better outcomes for spine deformity.
Methods

• A systematic review and meta-analysis was conducted to assess surgical outcomes following one versus two attending surgeon approach for spine deformity.

• MEDLINE, Embase, Web of Science and Cochrane database were searched till September 3, 2019.

• A total of 9 studies were included in the meta-analysis and Random Effects (RE) model were used to pool the effect estimates.
Results

Estimated Blood Loss: Non-significantly higher in single surgeon group

Forest plot shows difference in means for blood loss in single surgeon vs. dual surgeon group for cohort studies (mean difference = 354.3 mL; 95% CI: -31.5, 740.1; $I^2=0\%$; p-heterogeneity = 0.97; 3 studies) and case series (mean difference = 196.5 mL; 95% CI: -183.8, 576.9; $I^2=88\%$; p-heterogeneity = <0.01; 4 studies) separately in Random Effects (RE) Model. Solid squares represent the point estimate of each study and the diamond represents the pooled estimate of the difference. P-interaction between cohort and case series: 0.57
Operative Time: Statistically significantly higher in single surgeon group

Forest plot shows difference in means for operative times in single surgeon vs. dual surgeon group for cohort studies (mean difference = 94.3 minutes; 95% CI: 54.9, 133.6; $I^2=65.2\%$; p-heterogeneity = 0.0.5; 3 studies) and case series (mean difference = 58.7 minutes; 95% CI: 18.4, 99.1; $I^2=85.4\%$; p-heterogeneity = <0.01; 4 studies) separately in Random Effects (RE) Model. Solid squares represent the point estimate of each study and the diamond represents the pooled estimate of the difference. P-interaction between cohort and case series: 0.22.
Length of Hospital Stay: Statistically significantly higher in single surgeon group

Forest plot shows difference in means for length of hospital stay in single surgeon vs. dual surgeon group for cohort studies (mean difference = 0.85 day; 95% CI: 0.44, 1.27; I²=0%; p-heterogeneity = 0.61; 3 studies) and case series (mean difference = 0.87 day; 95% CI: 0.37, 1.36; I²=57.5%; p-heterogeneity = 0.07; 4 studies) separately in Random Effects (RE) Model. Solid squares represent the point estimate of each study and the diamond represents the pooled estimate of the difference. P-interaction between cohort and case series: 0.97.
Complications: Statistically significantly higher in single surgeon group

Forest plot for Mantel-Haenszel (MH) risk ratio between single versus two surgeon approach. Forest plot shows MH risk ratio in single surgeon and two surgeon group for cohort (MH risk ratio = 3.66; 95% CI: 1.03, 12.9; I^2=0%; p-heterogeneity = 0.97; 3 studies) and case series (MH risk ratio = 2.29; 95% CI: 1.30, 4.02; I^2=55.4%; p-heterogeneity = 0.10; 3 studies) separately in Random Effects (RE) Model. Solid squares represent the point estimate of each study and the diamond represents the pooled estimate of the ratio. P-interaction between cohort and case series: 0.51
Conclusion

• Two attending surgeon approach appears to be associated with reduced operative time, shorter hospital stays and reduced risk of complications.

• Surgeons should consider involving an additional surgeon in deformity cases with a high risk of peri-operative complications.

• These findings can potentially improve outcomes in surgical treatment of spine deformity.