PROMIS Better Reflects the Impact of Length of Stay and the Occurrence of Complications within 90 Days than Legacy Outcome Measures for Lumbar Degenerative Surgery

Cole Bortz BA¹, Katherine E Pierce BS¹, Haddy Alas BS¹, Avery Brown BS¹, Dennis Vasquez-Montes MS¹, Erik Wang BA¹, Christopher G Varlotta BS¹, Dainn Woo BS¹, Edem J Abotsi BA¹, Jordan Manning BA¹, Ethan W Ayres MPH¹, Bassel G. Diebo MD², Tina Raman MD¹, Michael C. Gerling MD¹, Renaud Lafage MS³, Virginie Lafage PhD³, Themistocles S. Protopsaltis MD¹, Aaron J. Buckland MBBS, FRACS¹, Peter G Passias MD¹

¹ Department of Orthopedic Surgery, NYU Langone Orthopedic Hospital, New York, NY, USA;
² Department of Orthopedic Surgery, SUNY Downstate Medical Center, Brooklyn, NY, USA;
³ Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY, USA
Disclosures

Dr. Peter G. Passias reports: consulting from Aesculap, Globus Medical, Medicrea, SpineWave and Zimmer Biomet; scientific advisory board membership from Allosource and Terumo BCT; publishing copyright from Jaypee Brothers Publishers, all outside the submitted work.

Dr. Virginie Lafage reports: consulting from Globus; paid presenting from DePuy and K2M; stock in Nemaris; research support from DePuy, Medtronic, Nuvasive, and Stryker; board membership on the International Spine Study Group and Scoliosis Research Society, all outside the submitted work.

Dr. Themistocles Protopsaltis reports: grants from CSRS and Zimmer Biomet; consulting for Globus, Innovasis, K2M, Medicrea, and Nuvasive; equity in Torus Medical; scientific advisory board for Innovasis, all outside the submitted work.

Dr. Aaron Buckland reports: consulting for NuVasive, K2M, and EOS Imaging; research support for Pfizer and Corin U.S.A, all outside the submitted work.
Background

- The Oswestry Disability Index (ODI) is limited:
 - Floor effect
 - Cross-contamination score bias
 - Weighting of unimportant items

 - The Oswestry Disability Index (ODI) is limited:
 - Floor effect
 - Cross-contamination score bias
 - Weighting of unimportant items

- Patient Reported Outcome Measurement Information System (PROMIS)
 - Efficient means of capturing patient-reported outcomes
 - Computer adaptive testing = shorter outcomes assessment

- ODI vs PROMIS
 - PROMIS has outperformed ODI in coverage and reliability
 - Unclear how PROMIS & ODI compare in ability to reflect impact of perioperative complications and length of stay (LOS)

Patrick et al, 1995; Muller et al, 2004

Brodke et al, 2017; Hays et al. 2015
Purpose

Assess differences between PROMIS and ODI as they relate to length of stay (LOS) and complication outcomes of surgical thoracolumbar patients.
Materials & Methods

• **Design:** Retrospective cohort study of consecutive, patient-reported outcomes at a single center.

• **Inclusion Criteria:**
 • Surgical patients >18 y/o
 • Thoracolumbar spine diagnosis
 • Available ODI and PROMIS scores at baseline and 3-month postoperative intervals

• **Statistical Analysis:**
 • **Pearson bivariate correlation:** assessed linear relationship between clinical outcomes (LOS, perioperative complications) and scores for both PROMIS (Physical Function, Pain Intensity, Pain Interference) and ODI.
 • **Linear regression:** predicted the relationship between clinical outcomes and 3-month postoperative scores for ODI and PROMIS.

Materials & Methods

Design:
Retrospective cohort study of consecutive, patient-reported outcomes at a single center.

Inclusion Criteria:
- Surgical patients >18 y/o
- Thoracolumbar spine diagnosis
- Available ODI and PROMIS scores at baseline and 3-month postoperative intervals

Statistical Analysis:
- **Pearson bivariate correlation:** assessed linear relationship between clinical outcomes (LOS, perioperative complications) and scores for both PROMIS (Physical Function, Pain Intensity, Pain Interference) and ODI.
- **Linear regression:** predicted the relationship between clinical outcomes and 3-month postoperative scores for ODI and PROMIS.
Results: Overall Outcomes

Included: 182 patients

Clinical Outcomes

- **Length of stay:** 2.7±2.8 days
- **Overall perioperative complication rate:** 16.5%
- **Common perioperative complications:**
 - Cardiac (2.2%)
 - Neurologic (2.2%)
 - Urinary (2.2%)
 - Infection (2.2%)
 - Pulmonary (1.1%)

Patient-reported Outcomes

- **Significant pre- to postop improvement**
 - **ODI:**
 - 50.2±16.1 → 39.0±19.2, *p*<0.001
 - **PROMIS Physical Function:**
 - 10.9±11.6 → 21.4±21.3, *p*<0.001
 - **PROMIS Pain Intensity**
 - 92.4±9.1 → 78.3±22.3, *p*<0.001
 - **PROMIS Pain Interference**
 - 58.4±5.8 → 49.8±8.6, *p*=0.001
Results: PROMIS and ODI Correlations with Outcomes

Correlation with postoperative HRQL outcomes

<table>
<thead>
<tr>
<th>Clinical Outcome</th>
<th>Health-related quality of life assessment</th>
<th>R</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of stay</td>
<td>ODI</td>
<td>0.314</td>
<td><0.001*</td>
</tr>
<tr>
<td></td>
<td>PROMIS Pain Intensity</td>
<td>0.237</td>
<td>0.001*</td>
</tr>
<tr>
<td></td>
<td>PROMIS Pain Interference</td>
<td>0.174</td>
<td>0.019*</td>
</tr>
<tr>
<td></td>
<td>PROMIS Physical Function</td>
<td>-0.296</td>
<td><0.001*</td>
</tr>
<tr>
<td>Complication Incidence</td>
<td>ODI</td>
<td>0.143</td>
<td>0.055</td>
</tr>
<tr>
<td></td>
<td>PROMIS Pain Intensity</td>
<td>0.137</td>
<td>0.065</td>
</tr>
<tr>
<td></td>
<td>PROMIS Pain Interference</td>
<td>0.182</td>
<td>0.014*</td>
</tr>
<tr>
<td></td>
<td>PROMIS Physical Function</td>
<td>-0.206</td>
<td>0.005*</td>
</tr>
</tbody>
</table>

- All postop HRQL instruments correlated with LOS
- PROMIS showed stronger correlations with complication incidence than ODI
Results: PROMIS and ODI Correlations with Outcomes

Correlation with pre- to postoperative changes in HRQL outcomes

<table>
<thead>
<tr>
<th>Clinical Outcome</th>
<th>Health-related quality of life assessment</th>
<th>R</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of stay</td>
<td>ODI</td>
<td>0.100</td>
<td>0.179</td>
</tr>
<tr>
<td></td>
<td>PROMIS Pain Intensity</td>
<td>0.167</td>
<td>0.024*</td>
</tr>
<tr>
<td></td>
<td>PROMIS Pain Interference</td>
<td>0.078</td>
<td>0.294</td>
</tr>
<tr>
<td></td>
<td>PROMIS Physical Function</td>
<td>-0.169</td>
<td>0.023*</td>
</tr>
<tr>
<td>Complication Incidence</td>
<td>ODI</td>
<td>-0.021</td>
<td>0.781</td>
</tr>
<tr>
<td></td>
<td>PROMIS Pain Intensity</td>
<td>0.084</td>
<td>0.258</td>
</tr>
<tr>
<td></td>
<td>PROMIS Pain Interference</td>
<td>0.127</td>
<td>0.087</td>
</tr>
<tr>
<td></td>
<td>PROMIS Physical Function</td>
<td>-0.104</td>
<td>0.161</td>
</tr>
</tbody>
</table>

- Changes in PROMIS score correlated with LOS; changes in ODI did not
- Complication incidence did not correlate with PROMIS or ODI
Results: Regression Analysis

- No association between ODI and complication occurrence:
 - \(R^2 = 0.015, p = 0.055 \)

- PROMIS Physical Function and Pain Interference were significantly associated with complication occurrence
 - Physical Function: \(R^2 = 0.037, p = 0.005 \)
 - Pain Interference: \(R^2 = 0.028, p = 0.014 \)

- Only pre- to postoperative changes in PROMIS were associated with LOS; changes in ODI were not.
 - ODI: \(R^2 = 0.005, p = 0.179 \)
 - PROMIS Pain Intensity: \(R^2 = 0.023, p = 0.024 \)
 - PROMIS Physical Function: \(R^2 = 0.023, p = 0.023 \)
Conclusions

- For patients undergoing thoracolumbar spine surgery, PROMIS better reflects the impact of perioperative complication occurrence and length of stay than ODI.

- Given previous reports demonstrating the lower administrative burden of PROMIS, this study suggests PROMIS may offer greater clinical utility in tracking outcomes.

 Fries et al, 2018

Limitations

- Heterogeneity of the included patient population (any thoracolumbar diagnosis)
- Generalizability is limited; patients come from a single institution
- Short follow-up (3-months)