Disparity in Cancer Treatment: Delay in Time from Surgery to Adjuvant Radiotherapy in Incarcerated Patients

(Poster ID – 1552)

Khanh H. Luong BA1, Colette Shen MD PhD2, Avinash S. Chandran PhD3, Brice A. Kessler4, Carolyn S. Quinsey MD4

1University of North Carolina School of Medicine, Chapel Hill, NC
2Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
3Matthew Gfeller Center, Chapel Hill, NC
4Department of Neurosurgery, University of North Carolina at Chapel Hill, Chapel Hill, NC
Disclosure

• I DO NOT have any financial or organizational relationships with commercial interests or other entities. I hereby certify that to the best of my knowledge, no aspect of my current personal or professional circumstances places me in the position of having a conflict of interest with my duties, responsibilities and exercise of independent judgement as an Officer, Member of the Board of Directors, Nominee for Office, Educational Presenter and/or a representative of AANS/NREF/NPA.
Introduction

• Prisoners who have cancer are less likely to receive adequate care.

• This study is a retrospective study seeking to address the effect of incarceration on cancer treatment and outcome.

 • **Hypothesis:** Compared to general populations, prisoners would experience an increase in time between surgery and adjuvant therapy.
Methods

Study Population and Sample
- Adults (>18 years old) who were diagnosed with cancer that require surgery and adjuvant radiation as treatment at UNC (2000-2019)
- 76 cases selected:
 - 31 incarcerated
 - 45 non-incarcerated

Data Collection
- Demographic data
 - Age, race, sex
- Treatment-related:
 - Surgery-radiation time interval (in days)
 - Treatment duration (from day of surgery to end date of radiation) (in days)
 - Pre- and post-treatment scores of Karnofsky Performance Status

Analysis
- Negative binomial regressions
 - $\alpha = 0.05$
 - SAS 9.4
Results

- Majority were men ($n=57, 74\%$) and white ($n = 57, 74\%$).
- Average age: 56.6 years
- Incarcerated patients: $n = 32$
- 29\% of all treatment cases ($n = 22$), a >10-point change in KPS scores post-treatment, as compared with pre-treatment scores.

Figure 1. Cancer Types Included in the Study.
Results

Figure 2. Interval/Duration Ratio with 95% Confidence Interval for Incarceration Status. (B) and (M) denote bivariable and multivariable analyses, respectively. Surgery-radiation interval was 54% longer in incarcerated patients as compared with non-incarcerated patients.
Discussion

• T_{SR} for treatment of cancers of head and neck and of the CNS should be no longer than 42 days (NCCN). The mean and median T_{SR} in the incarcerated group were 156.1 and 56 days.

• $T_{SR} \geq 50$ days was associated with the worst survival outcome (Harris et al. 2018)

• Among 5 prisoners who did not complete radiotherapy, reasons cited were:
 • Lack of access to transportation
 • Poor communication
 • Ill-treatment received in prison.

• Unable to identify an association between incarceration status and KPS/survival outcome, probably due to small sample size
Summary Points

• This is one of the first studies that examine the effect of incarceration on cancer treatment.

• We identified a delay in radiation treatment post operatively for cancer treatment in the incarcerated population.

• This allows providers and care teams to work on strategies to ensure proper care for incarcerated patients.
References