PD-L1 and PD-1 Expression in Melanoma Brain Metastasis with Survival Stratification across Treatments

Poster: 42630

Gina N. Monaco1*, David Priemer2, Alexander Vortmeyer, and Mahua Dey1,3
1Department of Neurosurgery, Indiana University, Indianapolis, IN 46202,
2Department of Pathology, Indiana University, Indianapolis, IN 46202,
3Goodman Campbell Brain and Spine, Indianapolis, IN 46202

* monacog@iupui.edu
Background

- Metastatic melanoma is a devastating disease that disproportionately affects young adults. Despite treatment, patients with metastatic melanoma often develop brain metastasis, which usually leads to death within months to a year.

- Immune checkpoint inhibitors are an emerging class of therapeutics which targets the interaction between programmed death receptor one on T-cells (PD-1) and programmed death ligand one (PD-L1) on tumor cells.

- A significant proportion of primary and metastatic melanomas express the PD-L1 ligand and many melanoma patients have had impressive responses to this therapy. Currently these therapies are in clinical trials to assess their effectiveness in melanoma patients with brain metastasis.

- Another ligand-receptor combination that is expressed in many melanomas that modulates the immune response is VEGF-A and its receptor VEGFR1, which is more consistently expressed in melanomas.

- The PD-L1 ligand and VEGFR1 receptor have been demonstrated in some brain metastases; it is unclear if this is consistent across all brain metastases or if expression patterns change after treatments such as chemotherapy, radiation, immunotherapy, and surgery.

Aims of project:

- To verify PD-L1, PD-1, and VEGFR1 expression along with T-cell infiltrates in brain metastasis samples from metastatic melanoma patients.

- To evaluate expression of PD-L1, PD-1, and VEGFR1 with survival across treatment strategies.
• Retrospective data review of all patients with metastatic melanoma and brain metastasis using neuropathology database
 - Project approved by IUSM IRB
 - Ten years of consecutive data from IU Neuropathology (2007-2017) revealed 68 specimens of metastatic melanoma to the brain from 59 patients who had metastatic melanoma who had at least one symptomatic brain metastasis that was resected
 - Of these patients, only four had their primary melanoma resected at an IU affiliated hospital and had primary tissue available for examination

• Data collected
 - Demographic information
 - Age at presentation of primary melanoma
 - Time to development of symptomatic brain metastasis after primary diagnosis
 - Survival from primary diagnosis
 - Survival after brain metastasis resection
 - Clinical characteristics
 - Brain metastasis location(s)
 - Number of resections for metastatic brain melanoma
 - Treatment information
 - Immunotherapy use
 - Chemotherapy use
 - Radiotherapy (WBXRT and SRS)
 - Immunohistochemistry and immunofluorescence
 - IF for CD4, CD8, FoxP3, PD-1, VEGFR1
 - IHC for PD-L1, VEGFR1
<table>
<thead>
<tr>
<th>Demographics & Clinical Information</th>
<th>Patient</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at melanoma diagnosis (years)</td>
<td>53</td>
<td>35</td>
<td>51</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>Time after primary diagnosis to development of symptomatic brain metastasis (years/months)</td>
<td>6y 11m</td>
<td>8y 10m</td>
<td>2y 6m</td>
<td>2m</td>
<td></td>
</tr>
<tr>
<td>Survival after melanoma diagnosis (months)</td>
<td>90</td>
<td>126</td>
<td>102 (still alive)</td>
<td>56 (still alive)</td>
<td></td>
</tr>
<tr>
<td>Survival after brain metastasis resection (months)</td>
<td>7</td>
<td>20</td>
<td>72</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Survival after initiation of immunotherapy (months)</td>
<td>--</td>
<td>24</td>
<td>60</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Brain metastasis location(s)</td>
<td>R frontal (multiple), L frontal, R caudate, R temporal, L cerebellum (multiple)</td>
<td>R occipital, L frontal</td>
<td>R parietal, L lateral ventricle</td>
<td>L temporal</td>
<td></td>
</tr>
<tr>
<td>Number of resections for brain metastasis</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment Information</th>
<th>Immunotherapy use</th>
<th>Immunotherapy timing</th>
<th>Chemotherapy use</th>
<th>Radiotherapy use</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
<td>--</td>
<td>temozolomide</td>
<td>WBXRT (post-resection)</td>
</tr>
<tr>
<td></td>
<td>Yes (IL-2, 2 courses)</td>
<td>Between resections</td>
<td>Vemurafinib (BRAF V600E inhibitor) MEK inhibitor (trial)</td>
<td>WBXRT (after first resection) SRS (pre-op to L frontal lesion)</td>
</tr>
<tr>
<td></td>
<td>Yes (ipilimumab)</td>
<td>After resection</td>
<td>temozolomide</td>
<td>Hypofractionated XRT to cavity (post-op) SRS x2 (post-op)</td>
</tr>
<tr>
<td></td>
<td>Yes (pembrolizumab)</td>
<td>After resection</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
Results (cont)

IHC and IF

<table>
<thead>
<tr>
<th>Expression</th>
<th>PD-L1</th>
<th>VEGFR1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary & Brain Metastasis Matched</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Primary > Brain Metastasis</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Brain Metastasis > Primary</td>
<td>A, B, D</td>
<td>A, B, D</td>
</tr>
</tbody>
</table>
Results (cont)

PD-L1

Primary

Metastasis
VEGFR1

Primary

Metastasis

Results (cont)
Of the four patients with primary and brain metastasis tissue available

- All lived > 6 months from their metastasis diagnosis
- Those receiving immunotherapy (CTLA-4 and PD-1 inhibitors) did live longer
- Both PD-L1 and VEGFR1 expression was downregulated in metastatic tissue in one patient (C – the only one with high staining in primary lesion) whereas in the other three expression was slightly increased in metastatic tissue
- Different brain metastases (excised at different times and from different brain locations) demonstrated differing expression of PD-L1 and VEGFR1 by comparison to their original primary

Tissue staining for PD-L1 and VEGFR1 in metastatic melanoma to the brain may provide more targeted therapeutic options for patients as expression of these molecules in primary tissue does not necessarily predict expression/treatment response in brain metastasis.