Early Postoperative Delineation of Residual Tumor after Low-Grade Glioma Resection by Probabilistic Quantification of Diffusion-Weighted Imaging

Moritz Scherer1 M.D., Christine Jungk1 M.D., Michael Götz2 M.Sc., Philipp Kickingeder3 M.D., David Reuss4 M.D., Martin Bendszus3 M.D., Ph.D., Klaus Maier-Hein2 M.Sc., Ph.D., Andreas Unterberg1 M.D., Ph.D.

1Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
2Devision of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
3Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
4Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
No financial support or conflict of interest to disclose
Background:

- Postoperative tumor volume is known to determine outcome in LGG
- Early postoperative MRI has been shown to overestimate residual tumor
 - FLAIR imaging susceptible to surgical trauma:
 - Edema
 - Ischemia

Objective:
To evaluate if integration of apparent diffusion coefficient (ADC) maps into image analysis permits an accurate estimation of residual tumor also on early postoperative MRI.
Retrospective, consecutive cohort of WHO°II gliomas: n=43 primary tumor resections

Inclusion according to available postoperative MRI:

- early post-OP (<48h) -> epMRI
- FLAIR + ADC-Maps (DWI)

AND simultaneous:
- Follow-up MRI (3-6m) -> fuMRI
- FLAIR

Workflow epMRI:

Co-Registration of FLAIR and ADC

Histogram Analysis of ADC-Maps in FLAIR hyperintense areas

Comparison with follow-up MRI FLAIR

Scherer et al., JNS 2018, accepted
Residual FLAIR hyperintense tumor was manually segmented on epMRI and corresponding ADC-maps were co-registered.

Using an expectation maximization algorithm, residual tumor segments were probabilistically clustered into areas of either ischemia (1) residual tumor (2), or normal white matter (3) by fitting a mixture model of superimposed Gaussians to the ADC histogram.
Diffusion-weighted imaging-based probabilistic image segmentation

Results from clustering:

- **On epMRI**: Clustering FLAIR Hyperintensity into regions of ischemia and tumor according to ADC-histograms
- **Enables quantification of ischemia-adjusted residual tumor volume on epMRI**
Volumetric Analysis (n=43)

Mean FLAIR tumor was significantly larger on epMRI compared to fuMRI (19.4±16.5 ml vs. 8.4±10.2 ml, p<0.0001).

Clustered tumor volumes on epMRI were no longer different from the fuMRI reference (mean difference -0.8 ± 3.7 ml, p=0.16)

Repeated Measures ANOVA followed by Bonferroni’s Multiple Comparison

Scherer et al., JNS accepted, 2018
Agreement Analysis:

Follow-up MRI and Clustered epMRI tumor volumes

Correlation [Pearson $r=0.96$ (p<0.0001), Concordance Correlation Coefficient (CCC) 0.89 (95% CI 0.83)] and Bland-Altman analysis suggested strong agreement between clustered epMRI volumes and the fuMRI reference for residual tumor after surgery.

Scherer et al., JNS 2018, accepted
Summary & Conclusions

• Probabilistic segmentation of ADC-maps facilitates accurate assessment of residual tumor within 72h after LGG resection.

• Multiparametric image analysis detected FLAIR signal alterations attributable to surgical trauma, which led to overestimation of residual LGG on epMRI compared to fuMRI.

• The prognostic value and clinical impact of this method has to be evaluated in larger case-series in the future.

Scherer et al., JNS 2018, accepted