Intraoperative Optical Biopsy of Brain Tumors: Update on Multigenerational System Experience with Confocal Laser Endomicroscopy

Evgenii Belykh MD¹, ², ³
Claudio Cavallo MD¹
Xiaochun Zhao MD¹
Eric J. Miller BS¹
Arpan A. Patel BS¹
Nikolay L Martirosyan MD, PhD¹
Robert F. Spetzler MD¹
Micheal T. Lawton MD¹
Jennifer M. Eschacher MD¹
Peter Nakaji MD¹
Mark C. Preul MD¹

¹Department of Neurosurgery
Barrow Neurological Institute
St. Joseph’s Hospital and Medical Center, Phoenix, Arizona
²Arizona State University, School of Life Sciences, Tempe, Arizona
³Irkutsk State Medical University, Irkutsk, Russia
DISCLOSURES: None

FINANCIAL SUPPORT: This research was supported with funds from the Barrow Neurological Foundation, the Women’s Board of the Barrow Neurological Institute, and by the Newsome Chair in Neurosurgery Research to Dr. Preul. We appreciate grant support by the Carl Zeiss AG, Oberkochen, Germany. Zeiss had no influence on the study design, data acquisition, analysis, or paper preparation. EB acknowledges scholarship support SP-2240.2018.4.
Introduction

- Confocal laser endomicroscopy (CLE) allows intraoperative “optical biopsy” at a cellular level without tissue processing.
- We report the evolution of this technology and results of clinical and experimental experience assessing a multigenerational blue laser 488nm CLE system.
- The equipment can be used for diagnosis and visualization of various brain pathologies.
Methods

- CLE guided biopsies and resections of tumors were obtained in patients and experimentally in animals
- Animal CLE feasibility studies included rodents injected with GL261, C6 glioma, and human derived GBM, swine and rodent brain injury models
- Fluorophores studied: fluorescein sodium (FNa), acridine orange, acriflavine, sulforhodamine101, 5ALA, cresyl violet, ICG
- Selected experimental gliomas had additional specific antibody labeling
- Total clinical experience with CLE: 237 patients with gliomas, meningiomas, and other CNS pathologies examined ex vivo and in vivo using a Generation 1 CLE and 34 patients using a Generation 2 CLE
Results

- CLE FNa clinical imaging produced an average of 77.7 ± 46.2 images per optical biopsy location.
- A first diagnostic image was identified within seconds of CLE use clinically (7-14 images).
- CLE specificity/sensitivity during FNa-guided surgery was equal or better than frozen section (94% / 91% gliomas, 93% / 97% meningiomas).
- Gliomas and brain injuries with visible FNa extravasation were distinguished in over 90% of CLE locations imaged (Sensitivity = 0.86, Specificity = 0.96, PPV = 0.97, NPV = 0.78).
- Generation 2 CLE showed improved image resolution and system operation for detecting tumor signal, rapid image acquisition allowing 3D-volumetric image display.
- Animal and human CLE, including specific antibody labeling, provided clear identification of tumor cells and border, and invading cells.
- Image intensity differences were detectable for PpIX fluorescence between normal brain and tumor areas ($P < 0.01$).
GL261 tumor core after fluorescein injection. Gen 1 (C/D) and Gen 2 (A/B) CLE images show similar tissue architecture pattern. E. Lower left image shows characteristic HE staining of the tumor core.
Tumor border visualized with fluorescein. Rapid ex-vivo LSM image shows gradient of fluorescein diffusion from the tumor to the normal brain. Scale bar is 50 um.
CLE imaging does not show 5-ALA.

A. Representative image of a coronal brain slice with a tumor viewed through operative microscope in BLUE400 mode shows bright red fluorescent signal from the tumor. B. Selected CLE images of GL261 tumor and normal brain in mice 2 h after 5-ALA administration. Normal brain showed no fluorescent signal in all of the cases. Fluorescent signal form tumor was visible only from a few areas and was not consistent across the biopsy locations and across the mice imaged. C. HE stained slice of the brain with a tumor, low magnification. D. Characteristic HE slide of the tumor core shows hypercellular tumor. It represents tumor tissue, from which CLE imaging was performed. E. Quantification of the images from an#27 (n=5 control; n=4 tumor) showed minimal, but yet significant difference in the overall pixel intensities of the selected best images taken from the tumor and normal brain. T-test was used to make comparison between the groups * - p<0.01. Selected images were acquired with similar CLE settings.
Conclusions

• 488nm CLE provides rapid intraoperative information on tissue architecture, atypical cellular features and could significantly improve the surgery pathology workflow

• Gen 2 CLE system provides at least equal quality images compared to Gen 1 CLE, with increased pixel resolution and novel scanning options

• Future avenues regarding precision or theranostics-based surgical management of tumors may involve CLE imaging with specific fluorescent targeted markers