THE EFFECT OF A NOVEL AGENT, AFPEP ON PROLIFERATION OF HUMAN GLIOBLASTOMA CELLS

Ruben Ngirwe Massa a
(Fassil B. Mesfin, MD PhD)
Department of Neurosurgery, University of Missouri

Introduction

The novel anti-cancer peptide, AFPeP, an Alpha-fetoprotein (AFP) analog, has shown promising inhibitory effect against Glioblastoma multiforme (GBM) cells in culture. AFPeP is a derivative of Alpha-fetoprotein. An epidemiology study has shown that pregnancy reduces the risk of developing GBM, and AFP has been implicated with this function. Here, we present a data showing that AFPeP interferes with proliferation of GBM cells in culture. These results were compared with current treatment agents used in clinical practice.

Methods

Mice glioblastoma cell lines was cultured as a monolayer in F-12K Medium with 2.5% fetal bovine serum, 1% penicillin and streptomycin in a humidified 5% CO₂ atmosphere at 37°C. Cells were released from monolayer by trypsinization using 0.25% trypsin. To examine the effect of AFPeP, tamoxifen and temolozomide, 5 x 10³ cells were seeded in each well of 2 collagen-coated 96-well plates. After 24hrs, the medium was replenished with various concentrations, (1µM, 10µM, and 100µM) of the AFPeP, tamoxifen, and temolozomide. Every 24hrs, for the next 2 days, the medium was removed and 2 µL of MTT solution (5 mg/ml in PBS) was added to each well, of one of the 96-well-plates. Subsequently, the medium was discarded and 100 µL of DMSO was added to each well. The plate was incubated in 5% CO₂ for 10 min. The growth inhibition was determined by measuring the absorbance at 540 nm and on an automated multi-wells reader.

Results

After 24hrs of treatment the growth inhibition was 26% for AFPeP, 15% for tamoxifen, and 4% for temolozomide. After 48hrs of treatment the growth inhibition was: 88% for tamoxifen, 36% for temolozomide and 29% for AFPeP.

Conclusion

• AFPeP had more growth inhibition than tamoxifen and temolozomide after 24 hours of treatment, and was the least effective after 48hrs of treatment.

Future Directions

Further studies are underway to investigate and optimize the effect of AFPeP in GBM.