Volumetric Analysis to Predict Growth Rate: Pituitary adenomas treated with fractionated radiotherapy

Vyshak Chandra, Kingston Kang, Charles F. Opalak M.D., Adam P. Sima, William C. Broaddus
Poster Number: 42463
Disclosures

• In compliance with the Accreditation Council for Continuing Medical Education’s (ACCME) *Standards for Commercial Support of CME*, VCU CME discloses all current relationships which program faculty report having with companies whose products and/or services they may discuss during their presentation. In addition, all presenters must disclose to the audience when any material they present recommends an off-label or unapproved use of a drug, procedure or piece of equipment.

• Vyshak Chandra discloses having no relationships to report
Introduction

• Treatment refractory and recurrent pituitary adenomas often require radiation therapy or stereotactic radiosurgery.

• Long-term control with radiation treatment is well known, but the pattern of volume response after radiation has not been characterized in detail.
Methods

- Patients with biopsy-proven pituitary adenomas were identified from pathology diagnoses at one institution between 2004 and 2014.

- Inclusion criteria were:
 - Patients who had received radiation therapy for a pituitary adenoma
 - Follow up was available for a minimum of 3 or more MRI scans
 - All patients were over 18 years of age

- T1-weighted 3-plane post-contrast MR images were used; tumor dimensions were measured with orthogonal diameters and volumes using the ABC/2 method (simplified ellipsoid volume).

- In this series, all patients were treated with fractionated radiation therapy.
Results

- Sixty-one MRI scans for 7 males (44%) and 9 females (56%) were evaluated.
- Tumor diameters ranged from 0.7cm to 4.22cm. Tumor volumes ranged from 0.12cc to 26.8cc. The median and mean volumes were 3.08cc and 5.25cc, respectively.
- Follow-up ranged from 8 to 70 months, with a median follow-up of 23 months.
Among the 15 tumors that were included, trend of tumor volume growth over time is shown in figure 1.1. Three (20%) patients had progressive tumor growth after radiation, and the remainder (80%) had stable or decreasing volumes over time. A Bayesian linear mixed effect model was applied to predict future tumor volume.

Figure 1.1: Tumor Volume Growth vs. Time
Results

The comparisons between model prediction and the actual tumor volumes are shown in figure 2.1 relative to original tumor volume. The mean predicted volume change was -0.244 (SD=0.290) cc per month.

Figure 2.1: Predicted vs. Actual Tumor Volumes using Bayesian linear mixed effect modeling
Discussion

• Analysis of scans showed that the majority of tumors respond to fractionated radiation treatment, and our study confirms that this treatment is effective for pituitary adenomas.

• Using our modeling, tumor response after radiation treatment can be effectively predicted.