Tariquidar increases in-vitro transport of Etoposide across a P-glycoprotein expressing monolayer— a model for blood brain barrier disruption

James Pan, BS
Gerald Grant, MD
Christy Wilson, PhD

DEPARTMENT OF NEUROSURGERY
STANFORD UNIVERSITY SCHOOL OF MEDICINE
No relevant financial disclosures or conflicts of interest.
The blood brain barrier (BBB) is a unique entity within the central nervous system (CNS) that consists of both passive and active mechanisms to regulate access to the brain.

- Multiple surface proteins expressed by vascular endothelium contribute to the integrity and polarity of the BBB.
- P-glycoprotein (P-gp)— a 170-kD transmembrane protein of the ABC transporter family is encoded by the ABCB1 (or MDR1) gene and is localized on the apical membrane of vascular endothelial cells.
- Facilitates transport of substrates of a wide specificity including cytotoxic compounds by efflux into luminal spaces such as the ventricular system for elimination.
- Also implicated in the development of a multidrug-resistance phenotype in many tumors refractory to conventional chemotherapy.
Tariquidar exhibits high affinity for P-gp and various other multidrug transporters such as BCRP.

• Tariquidar, developed from rational drug design, is an anthranilamide derivative which binds P–gp non–competitively at nanomolar concentrations.

• Prior in vivo studies in humans have shown that Tariquidar has been able to inhibit P-gp at the BBB, with an increased cerebral uptake of a known P-gp substrate, 11C-N-desmethyloperamide, by PET imaging.

• However, the utility of Tariquidar has not been studied in a neuro-oncologic model and the utility of this drug as an adjuvant to conventional chemotherapy warrants investigation.

• We used an in-vitro model of the BBB endothelium to screen for chemotherapy drug candidates who’s transport across a P-gp expressing monolayer can be increased by addition of Tariquidar.
We used an in-vitro model of the BBB endothelium to screen for chemotherapy drug candidates whose transport across a P-gp expressing monolayer can be increased by addition of Tariquidar.

- A monolayer of LLC-PK1 cells expressing MDR1 on a pcDNA vector was seeded on transwell plates and used as an in-vitro model for P-gp activity.
- Various drugs (vincristine, paclitaxel, irinotecan, etoposide, and temozolomide) were screened using a transwell assay to determine if Tariquidar (100 nM) can inhibit P-gp.
- Differential etoposide concentrations in triplicate transwell chambers measured by GC-MS were significant (p<0.05) between LLC-PK1/MDR1+ and LLC-PK1/MDR1–, and LLC-PK1/MDR1+ treated with Tariquidar.
- No significant difference in differential drug concentrations were observed in vector cells and LLC-PK1/MDR1+ treated with Tariquidar.
Differential Drug Transport Augmented by Tariquidar

<table>
<thead>
<tr>
<th></th>
<th>A. LLC-PK1 pcDNA MDR1−) Negative Control</th>
<th>B. LLC-PK1 pcDNA MDR1+ Positive Control</th>
<th>C. LLC-PK1 pcDNA MDR1+ (+100 nM Tariquidar)</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loperamide (Positive Control)</td>
<td>Top:Bottom Drug Concentration</td>
<td>1.75 ± 0.78</td>
<td>43.66 ± 6.21</td>
<td>1.76 ± 0.40</td>
</tr>
<tr>
<td>P-value</td>
<td></td>
<td>0.01 (vs B)</td>
<td>(0.01 vs C)</td>
<td>0.96 (vs A)</td>
</tr>
<tr>
<td>Temozolomide</td>
<td>Top:Bottom Drug Concentration</td>
<td>18.14 ± 3.64</td>
<td>16.20 ± 6.63</td>
<td>16.98 ± 4.85</td>
</tr>
<tr>
<td>P-value</td>
<td></td>
<td>0.77 (vs B)</td>
<td>0.91 (vs C)</td>
<td>0.39 (vs A)</td>
</tr>
<tr>
<td>Irinotecan</td>
<td>Top:Bottom Drug Concentration</td>
<td>45.39 ± 16.81</td>
<td>325.56 ± 26.22</td>
<td>205.97 ± 53.03</td>
</tr>
<tr>
<td>P-value</td>
<td></td>
<td>0.0005 (vs B)</td>
<td>0.0185 (vs C)</td>
<td>0.0196 (vs A)</td>
</tr>
<tr>
<td>Etoposide</td>
<td>Top:Bottom Drug Concentration</td>
<td>19.35 ± 12.23</td>
<td>224.97 ± 55.97</td>
<td>55.25 ± 3.47</td>
</tr>
<tr>
<td>P-value</td>
<td></td>
<td>0.03 (vs B)</td>
<td>0.03 (vs C)</td>
<td>0.06 (vs A)</td>
</tr>
</tbody>
</table>

Loperamide is a P-gp substrate, which can be reversed by Tariquidar.

TMZ is not a P-gp substrate, *in-vitro*.

Irinotecan is a P-gp substrate, which can be slightly reversed by Tariquidar.

Etoposide is a P-gp substrate, which can be reversed by Tariquidar.
• A primary glioma cell line (D54) derived from surgical resection was obtained to determine if glioma cells express P-gp.
• Expression was determined by western blot using the C219 antibody and cytotoxicity assays determined if Tariquidar can increase sensitivity of tumor cells to chemotherapy.
• Because our in-vitro transwell assay revealed that Tariquidar increases transport of Etoposide the most, treatment of D54 primary glioma cells expressing MDR1 with Tariquidar increased etoposide toxicity by approximately 1.94-fold (p<0.05).
Our data suggests that Tariquidar, a third generation P-gp inhibitor can increase the transport of Etoposide across a polarized epithelium expressing MDR1.

- We have begun to explore the role of Tariquidar in the cerebral uptake of P-gp substrates in an in-vitro mouse glioma model.
- Rhodamine-123 (Rh-123) is a known P-gp substrate and a fluorescent dye. Using a cranial window approach, live-cerebral imaging with florescence microscopy can measure in real-time the cerebral uptake and clearance of Rh-123 with and without Tariquidar administration.
- This work can give insights into the dynamics of how Tariquidar and its substrates interacts with the BBB in real time, and is currently undergoing.