Survival Patterns of 5750 Stereotactic Radiosurgery-Treated Patients with Brain Metastasis as a Function of the Number of Lesions

MIR AMAAN ALI, MAS, BRIAN R. HIRSHMAN, MD, PHD, BAYARD WILSON, MD, MAS, KATE T. CARROLL, MAS, ALI A. ALATTAR, BS, JAMES A. PROUDFOOT, MS, STEVEN J. GOETSCHE, PHD, JOHN F. ALKSNE, MD, KENNETH OTT, MD, HITOSHI AIYAMA, MD, OSAMU NAGANO, MD, BOB S. CARTER, MD, PHD, GERALD FOGARTY, PHD, ANGELA HONG, PHD, TORU SERIZAWA, MD, PHD, MASAAKI YAMAMOTO, MD, CLARK C. CHEN, MD, PHD
Disclosure

I DO NOT have any financial or organizational relationships with commercial interests or other entities. I hereby certify that to the best of my knowledge, no aspect of my current personal or professional circumstances places me in the position of having a conflict of interest with my duties, responsibilities and exercise of independent judgement as an Officer, Member of the Board of Directors, Nominee for Office, Educational Presenter and/or a representative of AANS/NREF/NPA.
Introduction

- Brain metastases are the most common form of intracranial malignancy
- Treatment is accomplished with stereotactic radiosurgery (SRS), whole-brain radiotherapy (WBRT), or surgery
- Choice of therapy depends on the size, location, and number of brain metastases (BMs)
- The number of BMs is especially important in choosing between SRS and WBRT
- Limited information is currently available on the relationship between the number of BMs and survival in patients receiving SRS
Methods

- This is a multi-institutional retrospective cohort study of BM patients treated with SRS without surgical resection.
- We aimed to assess the relationship between survival and number of SRS-treated BMs.
- We categorized the number of BMs as 1, 2-4, 5-10, and >10 BMs.
- We used Kaplan-Meier and multivariable Cox proportional hazards analyses to assess survival.
- We controlled for age, sex, race, year of diagnosis, cumulative intracranial tumor volume (CITV), and tumor location.
Results

- There were 5,750 patients treated with SRS for BM between 1994 and 2014 at four institutions.

- Median overall survival (mOS) was affected by number of BMs:
 - Best with 1 BM (1 BM 7.1: months vs. 2-4 BM: 6.4 months, P=0.009)
 - No difference between 2-4 and 5-10 (2-4 BM: 6.4 months vs. 5-10 BM: 6.3 months, P=0.170)
 - Worst for >10 BMs (2-10 BM: 6.3 months vs. >10 BM: 5.5 months, P=0.025)

- Multivariable Cox proportional hazards models:
 - Step-wise increase in the hazard of death by 5% for every increment of 5-6 BMs (P < 0.001)
Table 1

Table 1. Median OS as a function of the number of BMs

<table>
<thead>
<tr>
<th>Number of BMs</th>
<th>Median OS (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.1</td>
</tr>
<tr>
<td>2-4</td>
<td>6.4</td>
</tr>
<tr>
<td>5-10</td>
<td>6.3</td>
</tr>
<tr>
<td>>10</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Table 2

Table 2. Results of multivariable Cox proportional hazards model adjusted for age, sex, race, year of diagnosis, CITV, and tumor location

<table>
<thead>
<tr>
<th>Variable</th>
<th>Comparison (reference to non-reference)</th>
<th>Hazard ratio</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of BMs</td>
<td>1 to 2-4</td>
<td>1.103</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>2-4 to 5-10</td>
<td>1.015</td>
<td>0.692</td>
</tr>
<tr>
<td></td>
<td>5-10 to >10</td>
<td>1.117</td>
<td>0.014</td>
</tr>
</tbody>
</table>
Figure 1

Figure 1. Kaplan-Meier curves as a function of the number of BMs. The best survival is seen in patients with 1 BM, followed by 2-10, and the worst is with >10 BM.
Discussion

- The contribution of BM number to overall survival is modest
- The number of BMs should be considered when deciding between SRS and WBRT
 - It should not take precedence over other established factors
 - It should be considered in the greater clinical context when making treatment decisions
- Poor survival with many BMs was independent of CITV
 - CITV was the more important predictor of survival
 - However, given the same CITV, a patient with few tumors is expected to survive longer than a patient with many tumors
Summary Points

- Patients with many BMs have poorer survival compared to those with fewer BMs.
- This effect is modest, but should be taken into consideration in treatment planning.
- Even for patients with the same intracranial tumor volume, a greater number of BMs portends a worse prognosis.