Intra-Tumor Epigenetic Heterogeneity Is Associated With Tumor Grade and Epigenetic Drivers in Glioblastoma Multiforme

Matthew Trawczynski, BA; Andrei Mikheev, MD, PhD; Daniel Mar; PJ Cimino, MD, PhD; Luis Gonzalez-Cuyar, MD; Robert Rostomily, MD; Karol Bomsztyk, MD

AANS Annual Scientific Meeting
April 29th-May 2nd
New Orleans, LA
ID: 42350
Acknowledgements and Disclosures

• The authors have no disclosures.
• This study has been funded by NIH R33CA191135, R21GM111439, R01DK103849, NIH R01CA181445, R01NS091251, and the UW Big Idea GBM Heterogeneity Grant.

1. Rush Medical College, Rush University Medical Center
2. Houston Methodist, Department of Neurosurgery and Research Institute
3. University of Washington, Department of Neurosurgery and Institute for Stem Cell and Regenerative Medicine
4. University of Washington, UW Medicine Lake Union
5. University of Washington, Department of Pathology, Division of Neuropathology
Why Heterogeneity Matters

- Intra-tumor heterogeneity refers to cellular, genetic, and epigenetic variation in one tumor.
- GBM is well established to have high degrees of inter and intra tumor heterogeneity.
- First GBM genome atlas found 453 mutations in 223 genes (Guzman et al. 2017).
- Many mutations/proteins not found in every tumor section
- Critical need to define how and why heterogeneity contributes to malignant phenotype before epigenetic therapy can be applied
Methods

1. **Section tumors into 5 regions each**

2. **Neuropathology grading**

3. **PIXUL-MatrixChIP-qPCR to study epigenetic marks at 30 known oncogenes**

4. **(a) Calculate coefficient of variation of slices A-E for all tumors, epigenetic marks, and oncogenes. (b) Perform statistical analysis and PCA.**

5. **Principle Component Analysis**
1. Intra-tumor epigenetic heterogeneity increases with malignant phenotype

(a) Intra-tumor variation increases with tumor grade. Principle component analysis performed on CV values of tumor slices A-E shows heterogeneity of Pol II, H3K27Ac, K3K9,14Ac, H3K27me3, 5mC, and 5hmC at thirty oncogene sites studied.

(b) Scattergram plot analysis showing distribution of CV values for different glioma grades (**p<0.0001, Spearman ranked correlation, Mann-Whitney test).
2. Transcript heterogeneity matches epigenetic heterogeneity

Epigenetics

mRNA
3. What drives this heterogeneity?

Figure 1. Principle component analysis shows permissive marks (H3K27Ac/H3K9,14Ac) clustering together and repressive marks (H3K27me3/5mC) clustering together.

Figure 2. Relative to normal brain tissue, repressive marks show significantly higher intra-tumor heterogeneity than permissive marks, suggesting that variation is driven more by H3K27me3/5mC silencing rather than H3K27Ac/H3K9,14Ac activation at these oncogene loci (Mann-Whitney U Test).
4. Intra-tumor heterogeneity is oncogene dependent

- HIF1A and TLX1 showed greatest overall intra-tumor epigenetic heterogeneity
- ZEB2, SOX2, and HIF2A showed the lowest overall intra-tumor heterogeneity
Discussion

• Study purpose is to show how and why heterogeneity drives malignant gliomas
• Results show high degree of heterogeneity on phenotype, mark, and gene levels, suggesting that novel treatment strategies could exploit this variation.
• Mark-gene permutations could exist that combine information regarding aberrant expression and degree of heterogeneity.
• Here we identified SOX2 and ZEB2 as known GBM oncogenes with low intra-tumor epigenetic variation.
Conclusions

• Combining aberrant expression and gene heterogeneity to identify optimal mark-gene permutations is critical to epigenetic therapy design.
• Multiple biopsies needed per tumor to accurately describe transcript, genetic, epigenetic levels.
• Some repressive marks are responsible for driving heterogeneity more than activating H3 acetylation marks.
• Intra-tumor heterogeneity contributes to inter and intra study variability.
• High throughput epigenetic platforms needed to study GBM heterogeneity.