Modified myofascial technique for open fetal myelomeningocele repair results in improved outcomes

Tracy M. Flanders, MD¹, Gregory G. Heuer, MD, PhD¹,², Peter Madsen, MD¹, Catherine Mackell, BSN, RN², Erin Alexander, BA¹, Julie Moldenhauer, MD², Deborah Zarnow, MD², Alan Flake, MD²,³, N. Scott Adzick²,³

1. Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA
2. The Center for Fetal Diagnosis and Treatment, Children’s Hospital of Philadelphia, Philadelphia, PA
3. Division of Pediatric General, Thoracic, and Fetal Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA

Poster ID: 41531
Financial disclosures

• None
Inclusion cysts

- MOMS trial did not report statistical difference in inclusion cyst (IC) occurrence between prenatal and postnatal myelomeningocele (MMC) closure
- Dermoid and epidermoid ICs have been reported in both MMC populations
- ICs are associated with neurologic decline requiring re-operation for resection and tethered cord release
Inclusion cysts in fetal and postnatal MMC repair

• Inclusion cyst incidence in postnatal MMC repair patients is not generally known as patients are not routinely imaged and may be thought of as asymptomatic from baseline neurologic injury

• IC etiology in prenatal MMC repair patients:
 – Residual rests of epithelial tissue at placode
 – Persistent skin connection
 – Wound healing factors in fetal environment
Methods

• Single-center retrospective study of subset of post-MOMS trial patients undergoing fetal or postnatal MMC repair from January 2011 to May 2016

• After January 2015, myofascial closure technique for fetal repair was modified

• Families of patients who transitioned care to local institutions were contacted via telephone for outcome information

• Outcomes: hindbrain herniation, hydrocephalus, development of IC requiring surgical resection
Modified myofascial closure

• Dural lined myofascial flaps raised with needlepoint monopolar cautery
• More robust watertight closure created over released placode
Results

<table>
<thead>
<tr>
<th></th>
<th>Prior to implementation of modified technique</th>
<th>After implementation of modified technique</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reversal of hindbrain herniation</td>
<td>56/69 (86%)</td>
<td>40/42 (95%)</td>
<td>p=0.13</td>
</tr>
<tr>
<td>Hydrocephalus</td>
<td>30/72 (42%)</td>
<td>11/43 (26%)</td>
<td>p=0.12</td>
</tr>
<tr>
<td>ICs requiring resection</td>
<td>10/23 (43%)</td>
<td>0</td>
<td>p=0.0007</td>
</tr>
</tbody>
</table>
Discussion

• Scar tissue and spinal cord adhesion in fetal MMC repair may contribute to IC development

• Modification of surgical closure techniques may decrease cord adhesion and scar tissue
Conclusions

• Modified myofascial closure is safe and feasible

• New approach results in decreased rate of inclusion cyst development requiring surgical resection