2. Hemorrhages in figures A-Lateral bleed; and B) hospital course, and clinical outcomes.

In this study, thalamic hemorrhages are divided into hemorrhages within the thalamus. Few studies have examined the topographic location of clinical presentation of thalamic hemorrhages varies widely extension are the major predictors of poor patient prognosis. Predicting outcomes for ICH patients remains a challenge. More detailed classification of thalamic hemorrhages could demonstrate that bleed volume and intraventricular extension were analyzed.

Data Collection

CT scans of patients were independently analyzed by three reviewers.

Any discrepancies between hemorrhage categorization was settled by committee consensus. ICH volume and shape, ventriculomegaly, and extension into the ventricles, internal capsule, and lentiform nucleus were analyzed.

Outcome data, including: mortality, discharge disposition, hospital length of stay, ICH score, Glasgow Coma Scale (GCS), and modified Rankin Scale (mRS) at admission and discharge, was collected from electronic medical records.

METHODS

• Retrospective analysis of computed tomography (CT) scans and electronic medical records.
• 168 patients met inclusion criteria:
 1. CT scan on record within 24 hours of admission
 2. ICH originating in the thalamus
 3. No previous hospital admission due to ICH

AIMS

1. Create a thalamic zoning scheme for ICH classification based on anatomical nuclei.
2. Determine if clinical outcomes are associated with specific thalamic zones.

ZONING SCHEME

Neuroanatomical Thalamic Relationships. Extra-thalamic neuroanatomical structures are displayed on the left of the axial illustration. Involvement frequencies (%) of extra-thalamic structures are depicted on the right.

Statistical Analyses

• Analyses were performed using RStudio (RStudio Team (2015). RStudio: Integrated Development for R. RStudio, Inc., Boston, MA).
• Univariate analyses were conducted using Pearson’s X², Mann-Whitney U, Kruskal-Wallis, and Fisher’s exact tests.
• Multivariable logistic regression models were performed to evaluate the effect of risk factors and radiographic data on clinical outcomes.
• P-values less than 0.05 were considered significant, and confidence intervals were calculated at 95%.

ACKNOWLEDGEMENTS:

Figure illustrations by Abby Marie Smith and Brandon Neisewander.