Off-label Application of Pipeline Embolization Device (PED) in the Treatment of Intracranial Aneurysms

Buqing Liang, MD
Walter S. Lesley, MD, MBA, CPE, FACR
Ethan A. Benardete, MD, PhD
Patrick T. Noonan Jr, MD
Jason H. Huang, MD, FAANS, FACS

Department of Neurosurgery
Texas A&M University / Baylor Scott & White Health
Temple, TX, USA 76508

Poster ID: 41299
Off-label Application of Pipeline Embolization Device (PED) in the Treatment of Intracranial Aneurysms

Disclosure:
The authors have no disclosure.

Poster ID: 41299
Off-label Application of Pipeline Embolization Device (PED) in the Treatment of Intracranial Aneurysms

Abstract:
In 2011, FDA approved the usage of Pipeline embolization device (PED) for particular intracranial aneurysms (see indications below).[1] However, the application of PED has shown utility in multiple off-label purposes.[2] Here we review all the off-label PED cases in a single institute in the past 6 years.

FDA approved indications:[1]
- Age ≥ 22
- Size ≥ 10 mm
- Neck ≥ 4 mm or dome/neck < 2
- Petrous to superior hypophyseal

Off-label applications:[2]
- Previously treated
- Acutely ruptured
- Small (< 10 mm)[3][4]
- Distal circulation
- Posterior circulation
- Fusiform
- Tandem
- Blood-blister like

Poster ID: 41299
Methods:
This is a single institution, retrospective study of all the patients who underwent PED treatment since 2011, of which cases with off-label use were recruited for analysis. Of a total of 80 aneurysms treated with PED, 62 cases were off-label. All the clinical data including radiographic results were independently reviewed by two investigators (B.L. and W.L.).
Off-label Application of Pipeline Embolization Device (PED) in the Treatment of Intracranial Aneurysms

Results:

<table>
<thead>
<tr>
<th>Total aneurysms treated by PED</th>
<th>62</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total PED procedures</td>
<td>54</td>
</tr>
</tbody>
</table>

Demographic

<table>
<thead>
<tr>
<th>Gender</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>57</td>
</tr>
<tr>
<td>Male</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>54.26</td>
</tr>
<tr>
<td>Median</td>
<td>55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ethnicity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Caucasian/AA/Hispanic/Puerto Rican/Asian</td>
<td>40/11/6/4/1</td>
</tr>
</tbody>
</table>

Symptoms

<table>
<thead>
<tr>
<th>Symptoms</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Headache</td>
<td>44 (71%)</td>
</tr>
<tr>
<td>Vision changes</td>
<td>9 (14%)</td>
</tr>
<tr>
<td>Dizziness/vertigo</td>
<td>7 (11%)</td>
</tr>
<tr>
<td>CN III deficit</td>
<td>5 (8%)</td>
</tr>
</tbody>
</table>

Poster ID: 41299
Aneurysm characteristics

<table>
<thead>
<tr>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
</tr>
<tr>
<td>Right</td>
</tr>
<tr>
<td>P-Com/Ophthalmic/Supra-clinoid/Superior hypophyseal/Cavernous/Para-clinoid/Infra-clinoid/M1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ruptured</th>
<th>(14) (26%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute</td>
<td>(1)</td>
</tr>
<tr>
<td>Remote</td>
<td>(13)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (mm)</td>
</tr>
<tr>
<td>Median (mm)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neck (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (mm)</td>
</tr>
<tr>
<td>Median (mm)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saccular/lobulated/tandem/blood blister-like/fusiform</td>
</tr>
</tbody>
</table>

Poster ID: 41299
Pre-operative status

<table>
<thead>
<tr>
<th>Status</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native/virgin</td>
<td>35 (57%)</td>
</tr>
<tr>
<td>Coiled</td>
<td>17 (27%)</td>
</tr>
<tr>
<td>Stented</td>
<td>6 (10%)</td>
</tr>
<tr>
<td>Clipped</td>
<td>4 (6%)</td>
</tr>
</tbody>
</table>

Complications

<table>
<thead>
<tr>
<th>Complication</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bleeding (cutaneous; medically managed)</td>
<td>6 (10%)</td>
</tr>
<tr>
<td>Facial droop and arm weakness (resolved)</td>
<td>1</td>
</tr>
<tr>
<td>Ischemic stroke (delayed resolution)</td>
<td>1</td>
</tr>
<tr>
<td>PED with vessel occlusion (asymptomatic)</td>
<td>1</td>
</tr>
<tr>
<td>Sub-arachnoid hemorrhage (no deficit)</td>
<td>2</td>
</tr>
<tr>
<td>Tandem aneurysms (one patient)</td>
<td></td>
</tr>
</tbody>
</table>

Follow-up imaging

<table>
<thead>
<tr>
<th>Imaging Outcome</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post-operative day</td>
<td>44 (71%)</td>
</tr>
<tr>
<td>Mean/median (day)</td>
<td>67-650</td>
</tr>
<tr>
<td>Complete aneurysm occlusion</td>
<td>36 (82%)</td>
</tr>
<tr>
<td>Partial aneurysm occlusion</td>
<td>7 (16%)</td>
</tr>
<tr>
<td>No effect</td>
<td>1 (2%)</td>
</tr>
</tbody>
</table>

Results:

Off-label Application of Pipeline Embolization Device (PED) in the Treatment of Intracranial Aneurysms

Poster ID: 41299
Discussion:
Studies have been reported worldwide for the off-label applications of PED. In our institute, off-label PED has been extensively used in 62 aneurysms since 2012, including that are small, previously treated, tandem, fusiform, blood blister-like, and posterior circulation, etc. The number of female cases is dramatically larger than male cases (11.4:1), likely due to higher medical care service utilization in women than in men.[5] Headache is the most common presentation. 76% patients were smokers, 66% had hypertension, and 8% had family history. All patients received dual anti-platelet therapy (Aspirin + Clopidogrel or Aspirin + Ticagrelor) pre-PED which were continued post-operatively. Though the aneurysm-based complication rate is 10% (6/62), the case-based complication rate would be 9.3% (5/54) since the SAH happened in one patient for tandem aneurysms (two). Of these complications, all patients’ symptoms resolved (mRS ≤ 1) during follow-up. Total occlusion rate was 82% among the 44 (71%) aneurysms with post-operative imaging results. The mortality rate is 0%.
Conclusion:
Off-label application of PED is an effective method for the treatment of intracranial aneurysms with an acceptable safety profile including low long-term complication rate.
Off-label Application of Pipeline Embolization Device (PED) in the Treatment of Intracranial Aneurysms

Summary points:
- Off-label PED applications are common worldwide
- Off-label PED use is effective
- Off-label PED use has a similar safety profile compared to on-label PED use

Reference: